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Chapter 1

Introduction

1.1 Background of the Study

Due to awareness of the value of fish proteins and fats in human meals, the demand
for fish has increased globally. Although most of the fish that humans eat come from
sea fishing, the natural supply is inadequate to meet the growing population demand.
Thus, inland aquaculture has enormous demand all over the world. In this context,
the existence of approximately 12,000 non-perennial reservoirs in the dry zone (an-
nual rainfall less than 187 cm) provides a significant opportunity for the growth of Sri

Lanka’s culture-based fisheries industry to meet the local demand for fish [6].

This paper highlights the potential of the aquaculture of tilapia in Sri Lanka, which
can be produced under conditions of fresh, brackish, and salt water. In this paper, the
logistic growth model has been used to study harvesting, and appropriate adaptation
strategies must be identified to manage and increase productivity in the aquaculture
sector. The presented approach attempts to find evidence for the application of the
logistic population growth model in continuous time under conditions of continuous

and optimal supply in aquaculture.

1.2 Significance of the Study

Tilapia is considered an important species in the freshwater fisheries of Sri Lanka,
where a significant source of income is provided to local fishing communities and an
important role is played in national food security. In this study, the impact of the
density of the tilapia population and harvest rates is assessed using three models:
constant, proportional, and periodic, with the use of a logistic growth model. Optimal
harvest levels are determined for long-term development and reproduction of tilapia

while maximizing economic benefits for fish producers.



1.3 Objective of the Study

The primary objective of this research was to use a logistic population growth model
to identify optimal harvest levels that balance economic yield and environmental sus-
tainability with a sustainable fisheries management framework for freshwater tilapia
in Sri Lanka, thus exploring the efficiency and productivity of various sustainable fish

harvesting strategies.

1.4 Problem Statement

This study addresses how much should be harvested using sustainable harvesting meth-

ods to balance environmental and economic sustainability.



Chapter 2
Literature Review

In aquaculture, fish harvesting models are crucial in optimizing economic sustainability
and profitability. These models use mathematical frameworks to predict the most suit-
able harvesting proportion from the available population. The logistic growth model
is the most widely recognized measure of the trend and behavior of species. Verhulst’s
early theoretical developments established the logistic equation, which has now been

modified for several ecological uses [3].

The logistic growth model has been widely applied in fisheries across the world to
control sustainable harvest levels. [4], for instance, examined periodic, proportional,
and constant harvesting techniques and their effects on population stability. They
showed that population extinction results from overharvesting that exceeds the limits.
Despite its adaptability, proportional harvesting runs the danger of destabilizing when
harvesting rates go close to population growth rates. [1] used comparable models to
study tilapia fish populations in reservoirs in Albania. This study provided a useful
framework for evaluating how various harvesting techniques affect fish populations,

acting as a standard for other regions.

Sri Lanka’s inland fisheries are crucial for food security and economic development,
with over 12,000 non-perennial reservoirs in the dry zone providing ample opportuni-
ties for aquaculture. Tilapia, a key species, is adaptable to diverse water conditions,
but research on optimizing harvesting using logistic growth models is limited. The
literature on culture-based fishing in Sri Lanka lacks dynamic harvesting strategies,
highlighting a critical gap [7].

The most important factor for the successful management of harvested populations
is that harvesting strategies are sustainable. Harvesting has been considered a fac-
tor of stabilization, destabilization, improvement of mean population levels, induced

fluctuations, and control of non-native predators [1].



Chapter 3

Methodology

3.0.1 Study Area

The study focuses on the Udawalawe Reservoir, a key inland aquaculture site man-
aged by the National Aquaculture Development Authority (NAQDA). The reservoir
supports significant GIF'T tilapia production.

Tilapia are hardy, relatively fast-growing fish and typically reach maturity between 3
and 6 months, depending on environmental factors such as water quality. It breeds
multiple times per year with 100 to 1500 eggs from females. In addition, it has a
lifespan of 5 to 10 years under natural conditions. In addition, in aquaculture, they
are generally harvested between 6 and 12 months of age due to the identification of the

economic and nutritional value of tilapia.

3.0.2 Data Collection

The data used in this study will be obtained from NAQDA and other relevant sources.
The key data points include:

« Tilapia population trends over time (monthly/yearly records).

o Harvesting volumes under different strategies (constant, proportional, and peri-

odic).
o Environmental parameters such as water temperature and quality.

o Stocking and replenishment efforts by NAQDA.

3.1 Research Approach

Quantitative analysis was the main focus. Differential equations were applied to de-

rive these models because differential equations can represent a population’s size as a
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function of time.

3.2 Research Design

In this case study, a logistic differential equation was applied to study population

dynamics.

3.2.1 Population Growth and Carrying Capacity

The variable t represents time (the unit of time can be various according to the speci-
fied situation). P represents the variability of the population; therefore, P(t) is given
the population as a function of time, and then the first derivative % represents the
instantaneous rate of change of the population.

An exponential growth function is P(t) = Pge™. In this function, P(t) represents the
population at time t, P, represents the initial population at time zero, and constant

r>0 is called the growth rate.

Population size

Time

It verified that the function P(t) = Pge™ satisfies the initial-value problem 9=
with P(0) = F.
However, this is unrealistic in a real-world setting because it is a prediction that, as time
goes on, the population grows without bounds. Various factors limit a particular popu-

lation’s growth rate, including birth rate, death rate, food supply, predators, and so on.



Population size

Time

The concept of carrying capacity K allows for the possibility that in a given area,
only a certain number of a given organism or animal can thrive without running into

resource issues.

3.2.2 Logistic Differential Equation

While K represents the carrying capacity for a particular organism in a given envi-
ronment, let r be a real number that represents the growth rate. The function P(t)
represents the population of this organism as a function of time, and the F, represents
the initial population.

The logistic differential equation is given by:



3.2.3 Solving the Logistic Differential Equation

The logistic differential equation is given by:
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3.2.4 Mathematical Models of Logistic Growth Population
Equation

Logistic Growth Without Harvesting

P(t) is the population time ¢, r the growth rate, and K the carrying capacity. The
equilibrium points of equation (4) are P = 0 and P = K. The change of % is zero if
P=0or P=M.

If the positive initial population is smaller than the carrying capacity K, then the
population density P(t) increases. If the initial population is greater than the carrying
capacity K, then it will decrease K monotonically. Indeed, the behavior of the solution
for the first case is logistic growth.

For very small values of P, it is almost exponential, while P > %, it is asymptotically



close to the constant value K, describing the carrying capacity of the environment.
Some of the related models are discussed [8].

Constant Harvesting

dP P

=P (1 _ K) —h, P(0) = po (3.3)

where h is a fixed amount of fish is harvested monthly.
The fixed points, P*, are the solutions of the equation:

The model has two fixed points:

* JR—
Py =

DO | —

oo/

if0<h< %; one fixed point P* = % when h = %; no fixed point when h > %.

Proportional Harvesting
dP P
— =rP(1——=|—-hP, P(0)=PF 3.4
T ( K) . PO=h (3:4)

h is the harvest proportion, and K is the carrying capacity with no harvesting. The
fixed points, P*, are the solutions of the equation:

rP* <1 - P) = hP*

M
That is,
P*=0
and
P (r—h)M
r

The extinction fixed point, P* = 0, is unstable for values of h < r. As h increases, the
larger equilibrium (carrying capacity) shrinks, but it remains stable for h < r.

Periodic Harvesting

Cil];:rp (1—?) —h(l—i—sin (217;)> (3.5)

This model simulates seasonal variations, alternating between periods of harvesting
and rest, where h the harvesting rate is defined as: h(t) = ho(1 + sin(27t)), where
(1 + sin(27t)) denotes the periodicity or frequency of fishing cycles per unit of time.

3.2.5 Assumptions of the logistic model

o There is a constant carrying capacity, although there are some fluctuations in the
real-world scenarios.



There is no immigration or emigration; the only factor affecting it is the harvest-
ing.

Homogeneous population, which identically affects reproduction and uses re-
sources



Chapter 4

Data Analysis

4.1 Descriptive Analysis

The center of the Udawalawe reservoir is 06 ha in area and consists of broodstock

ponds, rearing and nursery ponds, and hatchery facilities [2].

Fish Rearing Facilities in Udawalawa Tilapia AQDC | No. of ponds | Area (m?)
Broodstock ponds 09 4990
Rearing ponds 02 450
Nursery ponds (Cemented cubicles) 34 920
Total 45 6360

Table 4.1: Summary of Fish Rearing Facilities in Udawalawa Tilapia AQDC

Month 2021 2022 2023 2024

January 20075 47159.3  29478.4  26432.7
February 16907  35289.9  36235.1  15992.1
March 13629 317974 31872.8  11000.6
April 24623  44352.2 443774 20327.5
May 33424 25124.2  24338.8  9111.6

June 9419  33778.7  33725.3  10233.6
July 7287  5H5779.4 574141 22763.1
August 7012 847175 87737.5  25507.4
September 14055  69767.4  71167.0  29000.0
October 10415 70458.1  72134.7  25668.0
November 17285  71235.0  72490.2  32070.9
December 19318  48489.1  48375.7  15467.8
Total 203479 617948.8 589346.5 268575.3

Table 4.2: Actual and Forecasted Tilapia Production (Mt) for 2021-2024

Based on this information derived from the trend analysis, it was observed that Novem-
ber, December, and January consistently exhibit the maximum level of tilapia produc-
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tion. In contrast, June, July, and August were associated with the minimum level of
tilapia production [5].

Since the expected data could not be obtained (pH value of water, water temperature,
supplied food quality, and other seasonal effects to calculate the exact population

growth rate), this case study has assumed the population growth rate is 0.8. carrying
capacity is 2,000,000 [5].

dP
E_O

P
Pl1—=)=0
T( K)

P
8P(1——— ) =
08 < 2000000> !

Ly
2000000
P=0 or P =2,000,000

Thus, the equilibrium points are P = 0 and P = 2,000, 000.

0.8P =0 or

Logistic Growth Model without Harvesting

Population (P)

Time

Figure 4.1: Logistic Growth Model without Harvesting

This means that if the initial population starts at P = 0, it will remain at P = 0.
Similarly, if the initial population starts at P = 2,000,000, it will remain at the same
level. The stability of these equilibrium points can be seen in Figure 4.1, and an
equilibrium point has been obtained according to the available data.
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4.2 Exploratory Analysis

As harvesting increases, the two fixed points move closer to each other, with the lower
fixed point remaining unstable and the upper fixed point remaining stable [1].

Logistic Growth Model with Constant Harvesting

In this method, it is considered that only one fixed harvest is obtained throughout the
year.

Logistic Growth Model with Constant Harvesting

Population (P)

1+ + + + + + + + + + + + + + + + + + + + +

0 1 1 I I I I | 1 1 )

0 2 4 6 8 10 12 14 16 18 20
Time

Figure 4.2: Logistic Growth Model with Constant Harvesting (h = hyaz)

For the maximum harvest amount h = 40, 000, Figure 4.2 shows an equilibrium point
near half of the carrying capacity. For F, larger than 1,000,000, the population will
decrease and approach 1,000,000. Theoretically, for less than 1,000,000, the population
will lead to extinction.

Figure 4.3 shows the decreasing trends of the tilapia population when harvest amounts
exceed the maximum harvest. This indicates that the fish population will go to extinc-
tion notwithstanding the initial population size. This is to say that overfishing during
one year can result in a sudden drop in fish tilapia in subsequent years. Hence, fish
farmers must be cautious and not exceed 2,000,000 in fishing quotas.

12
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Logistic Growth Model with Constant Harvesting
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Figure 4.4: Logistic Growth Model with Constant Harvesting (h < hpaz)
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For h < 40,000, theoretically there should be two equilibrium points that exist when
the value of harvesting is less than 2,000,000. According to Figure 4.4, the upper
equilibrium point is slightly less than 2,000,000.

Logistic Growth Model with Proportional Harvesting

In this method, the relationship between the harvesting rate h and growth rate r is
examined. In addition, harvesting is a proportion of the population growth rate.

Population (P)

Logistic Growth Model with Proportional Harvesting

+ + + + + + + + + + + + + + +

1 | L | I I I |

6 8 10 12 14 16 18 20
Time

Figure 4.5: Logistic Growth Model with Proportional Harvesting (h = r/2)

Figure 4.5 shows the situation in which the harvest rate and growth rate are equal.
According to the results, the time to approach half of the proportion is relatively less
than the time to approach half of the population in the method of constant harvesting
when the harvesting amount is equal to its maximum value.
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7 %10° Logistic Growth Model with Proportional Harvesting
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Figure 4.6: Logistic Growth Model with Proportional Harvesting (h > r)

As shown in Figure 4.6, the tilapia population goes extinct when the harvest rate is
greater than the growth rate. When the harvest rate r increases, the slope of the curve
increases, which implies that overfishing during one year can potentially extirpate the
fish in the reservoir. That is why it is crucial not to exceed the fishing quotas.

Based on Figure 4.7 below, it can be depicted that when the harvesting rate is less
than the population growth rate, the fish population becomes stable over time, which
is lower than the carrying capacity level, and it is a relatively lower amount than the
situation of constant harvesting with the harvest that is less than its maximum harvest.
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Logistic Growth Model with Proportional Harvesting

Population (P)

Time
Figure 4.7: Logistic Growth Model with Proportional Harvesting (h < r)

Logistic Growth Model with Periodic Harvesting

7 Logistic Growth Model with Periodic Harvesting

Population (P)
S

- w

N

Figure 4.8: Logistic Growth Model with Periodic Harvesting (h < hpaz)
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The population fluctuates from year to year but remains stable, demonstrating re-
silience. The ponds have a total initial population of 2,000,000 tilapia fish. During
the first year, it is assumed that the amount of tilapia harvest is below its maximum
harvest amount, allowing a proportion of tilapia fish to grow without being harvested
for a year, and this pattern is repeated for several years. Theoretically, the tilapia pop-
ulation should be increased until carrying capacity is reached when there is no harvest
during the year, but in this case, it is below carrying capacity (Figure 4.8).

7 x10° Logistic Growth Model with Periodic Harvesting

Population (P)
S
T

w
T

N

Figure 4.9: Logistic Growth Model with Periodic Harvesting (h = hy42)

The population dynamics of tilapia under periodic harvesting at the maximum sustain-
able yield are illustrated in Figure 4.9. A sharp decline from a high starting value was
initially experienced by the population due to the impact of harvesting. Over time,
the population is stabilized near a consistent value of approximately half the carrying
capacity, representing a sustainable balance where the natural growth capacity aligns
with the harvesting rate. Initial fluctuations in the population are caused by the pe-
riodic harvesting strategy, which gradually diminishes, indicating the resilience and
adaptation of the system to the applied harvesting pattern. It is demonstrated by this
outcome that long-term population stability can be ensured through periodic harvest-
ing at maximum harvesting amounts while supporting sustainable harvests, provided
favorable environmental conditions are maintained.
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7 %10° Logistic Growth Model with Periodic Harvesting

Population (P)
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T

w
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Time

Figure 4.10: Logistic Growth Model with Periodic Harvesting (h > hpaz)

The dynamics of a logistic growth model subjected to periodic harvesting is illustrated
in this graph, where the maximum sustainable threshold is exceeded by the harvesting
rate. A rapid decline is experienced by the population over time, eventually approach-
ing extinction. Harvesting intervals are reflected by periodic dips in the graph, leading
to a consistent reduction in the population size. This behavior shows that population
collapse results from exceeding the sustainable harvesting rate, highlighting the critical
importance of maintaining harvesting rates within sustainable limits.
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Chapter 5

Discussion and Conclusion

Fish supply cannot be solely dependent on marine/sea fisheries, and alternatives must
be found in the commercialization of aquaculture. Developing appropriate fish harvest-
ing strategies can help meet market demand. In the case of a continuous harvesting
strategy, when the value of the fish harvest exceeds its maximum value, it quickly be-
comes exhausted without recovering. In cases where a fixed harvesting strategy must
be used, it is best to harvest enough to achieve the maximum harvest possible with
less work. This allows the fish population to recover relatively quickly. The possibility
of obtaining a fish harvest above the maximum that can be obtained with the propor-
tional harvesting strategy is relatively higher compared to the fixed harvesting strategy.
Also, the proportional harvesting strategy quickly brings the fish population to equi-
librium. With the results of the periodic harvesting strategy, we can conclude that it
is the most economical and environmentally efficient method. However, it depends on
the time of use. All things considered, this third method is the most appropriate. The
solution to optimize the harvest while maintaining the fish population is the seasonal
harvesting strategy. To improve productivity, shorten the return on investment period,
and minimize the risk of changes in the selling price and production costs of the prod-
ucts, a harvesting strategy using seasonal harvesting strategies can be used, especially
when using comparatively short return periods. However, with constant harvesting,
fish farming does not have enough time to restore the fish population. By developing a
fish harvesting strategy, market demand can be met. Farmers can improve commercial
returns before harvesting. This study helps the farmer to establish freshwater ponds
such as tilapia fish, like any other agricultural activity.

19



Bibliography

Alfred Daci. “Fish Harvesting Models And Their Applications in a reservoir in
Saranda, Albania”. In: (July 2016), pp. 2458-9403.

Fish rearing facilities in Udawalowa Tilapia AQDC. URL: http://www.naqda.
gov . 1k / our - centers / freshwater - aquaculture - development - centers /
udawalawe-tilapia/.

Shewit Gebremedhin et al. “Scientific Methods to Understand Fish Population
Dynamics and Support Sustainable Fisheries Management”. In: Water 13.4 (2021).
ISSN: 2073-4441. DOI: 10.3390/w13040574. URL: https://www.mdpi.com/2073-
4441/13/4/574.

Mohamed Laham, Ishtrinayagy Krishnarajah, and Jamilah Shariff. “Fish Harvest-
ing Management Strategies Using Logistic Growth Model”. In: Sains Malaysiana
41 (Feb. 2012), pp. 171-177.

Dilini Rathnachandra, Pushpa Malkanthi, and R Pothuwila. “Forecasting of Inland
Fish Production: Case of Catla (Catla catla) and Gift Tilapia (Oreochromis niloti-

cus) Production in Udawalawa Reservoir in Sabaragamuwa Province, Sri Lanka”.
In: 7 (Aug. 2024), pp. 66-83. DOI: 10.4038/java.v7il.128.

W.M.H.K. Wijenayake et al. “Culture-based fisheries in non-perennial reservoirs in
Sri Lanka: Production and relative performance of stocked species”. In: Fisheries
Management and Ecology 12 (July 2005), pp. 249-258. por: 10.1111/j.1365-
2400.2005.00447 .x.

W.M.H.K. Wijenayake et al. “Culture-based fisheries in non-perennial reservoirs in
Sri Lanka: Production and relative performance of stocked species”. In: Fisheries
Management and Ecology 12 (July 2005), pp. 249-258. por: 10.1111/3.1365-
2400.2005.00447 .x.

W.M.H.K. Wijenayake et al. “Culture-based fisheries in non-perennial reservoirs in
Sri Lanka: Production and relative performance of stocked species”. In: Fisheries
Management and Ecology 12 (July 2005), pp. 249-258. por: 10.1111/j.1365-
2400.2005.00447 .x.

20


http://www.naqda.gov.lk/our-centers/freshwater-aquaculture-development-centers/udawalawe-tilapia/
http://www.naqda.gov.lk/our-centers/freshwater-aquaculture-development-centers/udawalawe-tilapia/
http://www.naqda.gov.lk/our-centers/freshwater-aquaculture-development-centers/udawalawe-tilapia/
https://doi.org/10.3390/w13040574
https://www.mdpi.com/2073-4441/13/4/574
https://www.mdpi.com/2073-4441/13/4/574
https://doi.org/10.4038/java.v7i1.128
https://doi.org/10.1111/j.1365-2400.2005.00447.x
https://doi.org/10.1111/j.1365-2400.2005.00447.x
https://doi.org/10.1111/j.1365-2400.2005.00447.x
https://doi.org/10.1111/j.1365-2400.2005.00447.x
https://doi.org/10.1111/j.1365-2400.2005.00447.x
https://doi.org/10.1111/j.1365-2400.2005.00447.x

Appendix

M = 200000; % Carrying capacity
r =0.8; % Growth rate
h = 60000; % Constant harvesting rate (0-40000)

tspan = [0 20]; % Time range from O to 20
max_harvest = r*M/4;

% logistic equation
logistic_harvesting = @(t, P) r * P x (1 - P / M) - hx(1+sin(2*pix*t));

PO_values = [203479, 617948.8, 589346.5, 268575.3];

figure(’Position’, [100, 100, 1200, 800]);
hold on;

for i = 1:length(PO_values)
PO = PO_values(i);
[t, P] = ode45(logistic_harvesting, tspan, PO);
plot(t, P, ’LineWidth’, 2);
plot(0, PO, ’ro’, ’MarkerFaceColor’, ’r’);
plot(0:20,200000, ’k+’, ’MarkerFaceColor’, ’r’);
end

xlabel (’Time’);

ylabel (’Population (P)’);

title(’Logistic Growth Model with Periodic Harvesting’);
grid on;

ylim([0 700000]1) ;

x1im([0 20]1);

xticks(0:2:20)
yticks(0:100000:700000) ;
ytickformat (’%d’);

% Bold specific y-axis values (PO values)
ax = gca;
ax.YAxis.FontSize 12;
ax.XAxis.FontSize = 12;
for i = 1:length(PO_values)

idx = find(ax.YTick == P0O_values(i));

if ~isempty(idx)

ax.YTickLabel{idx} = [’\bf’, ax.YTickLabel{idx}];

end
end
hold off;

output_file = ’C:\Users\Use\Desktop\logistic_growth_model9.png’;
print (output_file, ’-dpng’, ’-r300°);
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